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SUMMARY

The implementation of an adaptive mesh-embedding (h-re%nement) scheme using unstructured grid
in two-dimensional direct simulation Monte Carlo (DSMC) method is reported. In this technique,
local isotropic re:nement is used to introduce new mesh where the local cell Knudsen number is
less than some preset value. This simple scheme, however, has several severe consequences a;ecting
the performance of the DSMC method. Thus, we have applied a technique to remove the hanging
node, by introducing the an-isotropic re:nement in the interfacial cells between re:ned and non-re:ned
cells. Not only does this remedy increase a negligible amount of work, but it also removes all the
di>culties presented in the originals scheme. We have tested the proposed scheme for argon gas in a
high-speed driven cavity �ow. The results show an improved �ow resolution as compared with that of
un-adaptive mesh. Finally, we have used triangular adaptive mesh to compute a near-continuum gas
�ow, a hypersonic �ow over a cylinder. The results show fairly good agreement with previous studies.
In summary, the proposed simple mesh adaptation is very useful in computing rare:ed gas �ows, which
involve both complicated geometry and highly non-uniform density variations throughout the �ow :eld.
Copyright ? 2002 John Wiley & Sons, Ltd.
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I. INTRODUCTION

Rare%ed gas dynamics

The highly developed computational �uid dynamics (CFD) using the Navier–Stokes equations
has permitted the prediction of complex thermal and �uid problems of engineering and sci-
enti:c interest. However, there are limitations to the applicability based on these equations.
In some �ow regimes, the Navier–Stokes equations fail to approximate the gas dynamics be-
haviour and the particle nature of the matter must be taken into account. One of these is the
rare:ed gas �ow, which the mean free path becomes comparable with, or even larger than,
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the characteristic length of �ows. Such �ows can be characterized by the Knudsen number,
Kn= �=L, where � is the mean free path, and L is the characteristic length. Knudsen number
is usually used to indicate the degree of rarefaction. Traditionally, �ows are divided into four
regimes as follows [1]: Kn¡0:01 (continuum), 0:01¡Kn¡0:1 (slip �ow), 0:1¡Kn¡3 (tran-
sitional �ow) and Kn¿3 (free molecular �ow). As the Kn increases, the rarefaction becomes
important and even dominates the �ow behaviour. Hence, the N-S based CFD techniques are
often inappropriate for higher Kn �ows, such as slip �ow, transitional �ow and free-molecular
�ow.

Solution methodologies

The understanding of the rare:ed gas dynamics (high Knudsen number �ows) has played or
began to play an important role in several research disciplines. Each of these applications
of high Knudsen number �ows is now of practical scienti:c and engineering importance.
While the Boltzmann equation may be more suitable for approximating high Knudsen number
�ows, attempts to solve it numerically have met with much less success than the Navier–
Stokes equations due to the higher dimensionality (up to seven) of the Boltzmann equation
and the di>culties of modelling the integral collision term. To circumvent the di>culty of a
direct solution of the Boltzmann equation, an alternative method known as direct simulation
Monte Carlo (DSMC) was proposed by Bird [2] in 1963 to compute the hypersonic �ows.
Further applications of the DSMC method include gas �ows around spacecraft [3; 4], pumping
characteristics of high vacuum pump [5; 6], conductance computation of an ori:ce [7], the
slider air bearing of the computer hard disk [8] and, recently, the micro-scale gas �ows
[9–11], among others. This method requires the introduction of computational cells (meshes)
similar to those in CFD; however, the cells are mainly used for selecting collision partners,
sampling and averaging the macroscopic �ow properties. Many physical problems involve
very complicated geometry or highly non-uniform density variations throughout the �ow :eld;
hence, the generation of an appropriate mesh often becomes a very demanding and time-
consuming task. Generally, the appropriate mesh used for :nal computation is obtained through
trials and errors. In addition, the sizes of cell used in the DSMC method have to vary according
to the density or have to be re:ned near the body surface to obtain accurate prediction of
pressure, friction and heat transfer; however, these are not known as a priori in general.

Structured and unstructured mesh

Most applications of DSMC applied structured mesh [12] in the physical space. For problems
with complicated geometry, multi-block meshing techniques were developed :rst by Bird
[2; 12], which involved two steps: dividing the �ow :eld into several blocks followed by
discretizing each block into quadrilateral (2D) or cubic (3D) mesh. Subsequent research has
developed alternative meshing techniques such as the coordinate transformation method by
Merkle [13], the body-:tted coordinate system by Shimada and Abe [14] and the trans:nite
interpolation method by Olynick et al. [15]. All of these still used structured grids. It is much
easier to program the code using structured grids; however, it requires tremendous problem-
speci:c modi:cation. To alleviate such restriction and considering the e>ciency of applying
the mesh adaptation, unstructured mesh should be the best choice, although it might be
computationally more expensive. Boyd and his coworkers [3; 4] have applied such a technique
to compute the thruster plume produced by spacecraft and found that the results are very
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satisfactory. In addition, several studies [9; 11] have used such a technique to compute micro-
scale �ows, including the micro-channel, the micro-nozzle, the slider air bearing of computer
hard disk and the micro-manifold.

Mesh adaptation

The development of mesh adaptation in CFD and DSMC are described in the following in
turn.

CFD For the past decade, the development of CFD using adaptive unstructured meshes has
greatly extended the capability of predicting complex �ow :elds. Several adaptive mesh tech-
niques have been developed to increase the resolution of ‘important’ region and decrease the
resolution of ‘unimportant’ region within the �ow :eld, as reviewed by Powell et al. [16].

In general, mesh adaptation can be categorized into three methods [17]: (1) re-meshing
(mesh generation), (2) mesh movement, and (3) mesh enrichment (or h-re%nement). For the
:rst method, a solution based on the initial mesh is obtained, and then the mesh is regenerated,
which the mesh points are more concentrated on where resolution of the solution is needed.
This new mesh may contain more or fewer mesh points than the original mesh. For the
second method, the total mesh points remain the same in the computational domain. It is
common to use a spring analogy, in which the nodes of the mesh are connected by springs
whose sti;ness is proportional to certain measure of solution activity over the spring. The
mesh points are moved closer into the region where solution gradients are relatively large.
This is often applied to the spatial adaptation of a structured mesh. For the :nal method,
mesh enrichment, mesh points are added or embedded into the regions where relatively large
solution gradients are detected, while the global mesh topology remains intact. It is generally
regarded that mesh enrichment method has certain advantages over the :rst two methods
[17; 18]. One of the most important advantages is that the mesh enrichment technique is in
general many times faster and robust than the re-meshing technique [18]. In Reference [17],
it is mentioned that the disadvantage, however, is that the implementation of mesh enrichment
involves a signi:cant modi:cation to existing numerical schemes due to the appearance of
hanging nodes. This can be easily overcome, however, by some simple methods through the
elimination of hanging nodes, as proposed by Kallinderis and Vijayan [19].

DSMC The corresponding development and the application of the adaptive mesh technique
in particle method, such as the DSMC method, has been largely ignored. Applying adaptive
mesh technique in the DSMC method, as in CFD, not only improves the �ow :eld resolution
without increasing the computational cost much, but also more or less equalizes the statistical
uncertainties in the averaging process of obtaining the macroscopic quantities.

Among the very few studies about this subject, Wang and Harvey [20] have :rst applied
solution-based, re-meshing adaptive grid technique (mesh regeneration using the advancing
front method) in unstructured mesh to study the hypersonic �ow :eld with highly non-uniform
density variations involving shocks. Later on in the same group, Robinson [21] has applied
a similar technique combining a parallel DSMC method to compute a hypersonic �ow over
compression ramp at di;erent Knudsen numbers. However, some unexpected results such as
lower accuracy for a re:ned mesh, as compared with a coarse mesh, arose due to smaller
particle-per-cell caused by too many cells.
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Bohdan [22] developed a technique using the monotonic Lagrangian grid (MLG) in the
DSMC method, which provides a time-varying grid system that automatically adapts to local
number densities within the �ow :eld. However, the application of this MLG technique to
external gas �ows is not promising due to the particle sorting problems inhered in the scheme.
Additionally, this technique highly restricts the time-step size as compared with the traditional
DSMC method, which makes the cost of obtaining the steady-state solution comparably high.

Alejandro and John [23] have developed an adaptive mesh and algorithm re:nement
(AMAR) embedding the DSMC method within a continuum method (N-S equation solver)
at the :nest level of an adaptive mesh re:nement (AMR) hierarchy. This method can cope
with problems possessing several orders of magnitude of length scale.

Concerns related to mesh adaptation

Before implementing the adaptive mesh techniques, several concerns need to be considered
as pointed out by the excellent review article by Powell et al. [16] and the references cited
therein. These concerns are mainly applied to CFD; however, most of these are true to the
DSMC method as well. These include the data structure, the initial mesh generation, the mesh
adaptation procedure, the adaptation parameters and criteria, and the e;ect of mesh adaptation
on computational algorithm. These are brie�y described in turn in the following from the
perspectives of the DSMC method.

Data structure There exists a strong relationship between the selected mesh adaptation and the
data structure to be used. The majority of the DSMC codes apply structured mesh as mentioned
previously. Structured mesh allows the particle tracking to be relatively easy and accesses
the mesh information in memory more directly; however, it lacks the �exibility on mesh
adaptation. There are two ways of adapting the structured mesh. One way, called r-re%ne-
ment, is to ‘distort’ the mesh distribution, so that mesh redistributes more crowded in the
region where it needs mesh re:nement. Another way, called h-re%nement, is to add mesh
in the localized region in both x- and y-directions; however, it increases unexpectedly the
mesh population in other unexpected regions as well, where they are not required at all.
To allow for the addition (or deletion) of mesh in the computational domain avoiding the
problem outlined in the above, a more sophisticated mesh data structure, rather than the simple
structured mesh, has to be adopted. Unstructured mesh cannot be mapped onto a computational
space with structured (i; j) indexing. Instead, the connectivity information of mesh has to be
stored, which makes the mesh data access indirectly. However, the spawning of the mesh in
the regions of interest is much easier as compared to structured mesh due to the un-ordered
data structure. It was thus concluded that unstructured mesh is superior to structured mesh
considering the advantages and implementation of mesh adaptation.

Initial mesh generation The initial un-adapted mesh required for computation is generated
via either advancing front method or Delaunay triangulation if unstructured mesh is used.
The detailed description of these two methods can be found in Lohnern and Parikh [24] and
Baker [25], respectively, and are not repeated here.

Mesh adaptation procedure We have to decide how to adapt the mesh. For the unstructured
mesh, there are generally two ways of adapting the mesh: re-meshing and embedding [20].
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For the re-meshing procedure, generation of connectivity information for all the mesh is
required at each adaptation step. This is expensive in general as mentioned previously. For
the embedding technique, local h-re%nement is used to introduce new mesh points and only
the mesh in the immediate vicinity of new mesh needs to be connected. Hence, it requires less
computational e;ort. In addition, we have also to decide if isotropic or an-isotropic re:nement
is used. Generally, it is recognized that the quality of the mesh using isotropic re:nement is
superior to that using an-isotropic re:nement.

Adaptation parameters and criteria The decision of where to re:ne or coarsen the mesh is
one of the very critical issues in the mesh-adaptive scheme. For the DSMC method, density is
naturally the parameter to be considered. The reason for choosing this parameter is described as
follows. It often requires that the computational mesh size is much smaller (at least 1=3∼ 1=2)
than the local mean free path [2; 12], which is inversely proportional to the local number
density. In addition, the choice of density as the adaptation parameter helps equalize the
statistical uncertainties due to the sampling process for obtaining the macroscopic quantities.

E.ect on computational algorithm The e;ects of mesh adaptation for DSMC is trivial since
the cell is used mainly for selecting collision partners and sampling the particles. Thus, the
computational procedure is exactly the same except the cell number increases as mesh adap-
tation proceeds.

Objectives of the paper

Based on previous reviews, the objectives of the current research are summarized as follows:
(1) to develop a general adaptive unstructured mesh enrichment procedure; (2) to test the
procedures by performing computation for a high-speed driven cavity �ow and assess the
e>ciency of using density as the adaptation parameter; (3) to determine the accuracy of
the adaptive solution by making comparisons with previously studied hypersonic �ow over a
cylinder.

The paper begins with descriptions of the DSMC method with mesh adaptation. Results are
then considered treating benchmark test using a driven cavity �ow and its applications to a
hypersonic �ow in turn.

II. THE DSMC METHOD WITH MESH ADAPTATION

As mentioned previously, to achieve higher resolution of �ow properties, it is necessary to
adapt the existing mesh to the �ow conditions. Thus, in the current section, the general features
of the proposed DSMC method with mesh adaptation will be described in detail. This section
begins with the brief introduction (review) of the conventional DSMC method and then the
detailed procedure of proposed mesh adaptation is outlined at the end.

The conventional DSMC method

The basic idea of DSMC is to calculate practical gas �ows through the use of no more
than the collision mechanics. The molecules move in the simulated physical domain so that
the physical time is a parameter in the simulation and all �ows are computed as unsteady
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�ows. An important feature of DSMC is that the molecular motion and the intermolecular
collisions are uncoupled over the time intervals that are much smaller than the mean collision
time. Both the collision between molecules and the interaction between molecules and solid
boundaries are computed on a probabilistic basis and, hence, this method makes extensive
use of random numbers. In most practical applications, the number of simulated molecules is
extremely small compared with the number of real molecules. The details of the procedures
and the consequences of the computational approximations can be found in Bird [2; 12]. In
the current study, the variable hard sphere (VHS) model [12] and the no time counter (NTC)
method [12] were used to simulate the molecular collision kinetics.

The macroscopic quantities such as mean velocities and temperatures are sampled and
averaged from cells, which may be triangular or quadrilateral or hybrid with both. Because of
the unstructured mesh used, cell-by-cell particle tracing technique using the cell connectivity
information, similar to Piekos and Breuer [9], was adopted to locate the :nal particle position
at the end of each time step during computation. It o;ered the greatest �exibility of handling
di;erent types of boundary conditions and required much less speci:c problem change in
programming. In addition, the mesh adaptation described later also bene:ts greatly from the
use of unstructured mesh.

The DSMC method with mesh adaptation

General features Based on the reviews in previous chapter and considering the application to
DSMC, the general features of an adaptive mesh generation scheme are proposed as follows:
(1) unstructured mesh (triangular or quadrilateral or hybrid); (2) h-re%nement with mesh
embedding; (3) local cell Knudsen number (inversely proportional to density) and free-stream
parameter (relative local density ratio to free-stream value) as the mesh adaptation parameters;
(4) upper limit on maximum number of levels of mesh adaptation.

Adaptation parameters and criteria All mesh adaptation methods need some means to detect
the requirement of local mesh re:nement to better resolve the features in the �ow :elds and
hence to achieve more accurate numerical solutions. This also applies to DSMC. It is important
for the adaptation parameters to detect a variety of �ow features but does not cost too much
computationally. Often gradient of properties such as pressure, density or velocity is used
as the adaptation parameter to detect rapid changes of the �ow-:eld solution in traditional
CFD. However, by considering the statistical nature of the DSMC method, density is adopted
instead as the adaptation parameter. Using density as the adaptation parameter in DSMC is
justi:ed since it is generally required that the mesh size be much smaller than the local mean
free path to better resolve the �ow features, as mentioned previously.

To use the density as an adaptation parameter, a local cell Knudsen number is de:ned as

Knc =
�c√
Ac

(1)

where �c is the local cell mean free path based on HS model and Ac is the magnitude of
local cell area. When the mesh adaptation module is initiated, local Knudsen number at each
cell is computed and compared with a preset value, Kncc. If this value is less than the preset
value, then mesh re:nement is required. If not, check the next cell until all cells are checked.
This adaptation parameter is expected to be most stringent on mesh re:nement (more cells
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1 hanging node

(b)

2 hanging nodes

(c)

3 hanging nodes

(d)

initial grid
(a)

  isotropic     (1st stage)
   isotropic     (2nd stage)

       anisotropic  (2nd stage)

Figure 1. Mesh re:nement rules for quadrilateral cell.

are added); hence, the impact to DSMC computational cost might be high, but is required to
obtain an accurate solution.

Considering the practical applications of mesh adaptation in external �ows, we have added
another constraint, �¿�0, where �, free-stream parameter, is de:ned as

�=
�
�∞

(2)

and �0 is a preset value. Not only does the above constraint help to reduce the total re:ned
cell numbers to an acceptable level by reducing the cell numbers in the free-stream region a
great deal, but it also reduces the total computational time up to 30 per cent as can be shown
later.

Adaptation procedures Before outlining the procedures of mesh adaptation, two general rules
are described as follows.

(1) Isotropic mesh re%nement is employed for those cells, which 2ag for mesh re%nement.
A new node is added on each edge (face) of a parent cell and connecting them to form
four child cells. This rule applies to quadrilateral and triangular mesh, as illustrated in
Figures 1 and 2, respectively. In general, this will create one to three hanging nodes in
the interfacial cell, which is not re:ned, next to the isotropically re:ned cell. Existence
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initial grid
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1 hanging node
(b)

2 hanging nodes

(c)

3 hanging nodes
(d)

  isotropic     (1st stage)
   isotropic     (2nd stage)

       anisotropic  (2nd stage)

Figure 2. Mesh re:nement rules for triangular cell.

of hanging node(s) not only complicates the particle movement, but also increases the
cost of the cell-by-cell particle tracing due to the increase of face numbers. Hence, a
remedy is proposed as follows in item (2).

(2) An-isotropic mesh re%nement is utilized in the (interfacial) cells next to those cells
that have just been isotropically re%ned. Triangular child cells are formed no matter
what type the interfacial cell is, considering the generality of the practical programming.
Typical methods of interfacial mesh re:nement in the quadrilateral and triangular cells
are also shown in Figures 1 and 2, respectively. However, some special treatment
is required. For example, for a quadrilateral interfacial cell with three hanging nodes
(Figure 1(d)), an isotropic cell re:nement is conducted and then followed by an an-
isotropic mesh re:nement in the newly created interfacial cell. The removal of hanging
node(s) in the interfacial cells does increase the computational cost; it is, however,
trivial as compared with the disadvantages caused by the hanging node(s).

The basic ideas of re:ning the 2D unstructured mesh, :rst by isotropic re:nement, then by
an-isotropic re:nement, remain the same for the 3D tetrahedral unstructured mesh, although
more complicated conditions will be encountered. Work in this direction will be reported
elsewhere in the very near future. In addition, as in most h-re:nement processes in CFD,
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continuous removal of the hanging node will lead to degenerate triangles. However, the con-
sequence to DSMC is rather di;erent to CFD. In the interfacial regions between re:ned and
unre:ned cells (e.g., Figure 10(d)), bad quality cells (large aspect ratio) do occur. In DSMC,
this will introduce large errors when particles are collided in the cell if it is treated the same
as other normal cells. In our DSMC computation, we have implemented a scheme that if
the aspect ratio of the cell is larger than three (or four), then the subcell concept advocated
by Bird [12] is used to improve the collision kinetics of particles in the cell. Note that the
bad-quality cell numbers are not high as compared with the total cell numbers; hence, the
cost increase due to this implementation is minimal.

The mesh adaptation procedures are performed after enough samples of data at each original
cell are gathered. As a rule of thumb, about 50 000 particles sampled in a cell are considered
enough for the mesh adaptation purpose. The mesh adaptation module is initiated and checks
through all the cells to determine if mesh enrichment is required based on the speci:c adapta-
tion parameter, which was explained previously. If mesh enrichment is conducted, associated
neighbour identifying arrays are updated or created, coordinates and number of face for new
cells are recorded, and sampled data on the coarse parent cell are redistributed (based on
the magnitude of cell area) to the :ner child cells accordingly. The above procedures are
repeated until the prescribed maximum number of adaptation levels has been reached or no
mesh enrichment is required for all the cells in the computational domain. Before preceding
the DSMC computation using the most updated mesh, all sampled data are reset to zero.
Finally, the DSMC computation is then conducted on the :nal re:ned mesh to accumulate
enough samples for obtaining the macroscopic properties in the cells.

In summary, the following steps summarize the procedures for mesh re:nement.

(1) Set up initial grids and input data.
(2) Proceed DSMC computation until enough sampled data are gathered at each cell.
(3) Compute the adaptation parameters in each cell using Equations (1) and (2).
(4) Re:ne all the cells in which both the Knc is less than the preset Kncc and � is large

than �0 by conducting isotropic mesh re:nement. If the adaptation criteria are not met,
go to step (8).

(5) Create and update the neighbour identifying arrays, coordinates, face numbers, and
distribute sampled data to child cells, respectively. Reduce the simulation time step to
half.

(6) Check if there are any hanging nodes in the interfacial cells. If there are, then conduct
an-isotropic mesh re:nement. Also create and update associated cell data as described
in step (5).

(7) Return to (2) if both the accumulated adaptation levels are less than the preset maxi-
mum value and mesh re:nement is required.

(8) If the accumulated adaptation levels are greater than the preset value or no mesh
re:nement is required, then reset all sampled data to zero and precede the DSMC
computation as normal.

The corresponding �ow chart is illustrated in Figure 3. Note that the proposed mesh adap-
tation is capable of re:ning the mesh close to the body surface following the real surface
geometry if the surface contour can be cast into parametric function format as described
next.
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Figure 3. Adaptive-mesh DSMC �owchart.
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Surface representation If the boundaries of the computational domain of solid body are not
straight, it is not su>cient to place the new node in the midway of the edge (face) of the parent
cell. If this is done, a very rough piecewise representation of the original geometry results,
which loses the claimed advantages of mesh re:nement. What must be done is to move the
new node location onto the real boundary contour. In the current implementation, it is assumed
that the boundaries can be represented in parametric format. Speci:c neighbour identi:ers
are assigned to these non-straight boundary cells to distinguish from straight boundary cells.
Whenever the boundary cells, which require mesh re:nement, are identi:ed as a non-straight
boundary cell, the corresponding parametric function representing the surface contour are
called in for mesh re:nement to locate the correct node positions along the parametric surface.
This can be demonstrated in the application to cylinder �ow as shown in the next section.

III. BENCHMARK TEST

A high-speed driven cavity �ow is used to verify the mesh adaptation scheme. Note that
adaptation criterion is more or less relaxed for the benchmark problem test and results are
emphasised on the mesh adaptation rather than the physics of the solution.

Problem description

A high-speed driven cavity �ow, as schematically shown in Figure 4, is tested with �ow con-
ditions set as follows: Kn=�i=H=0:04, aspect ratio L=H=1, initial number density ni=6:47E17,
bottom plate speed Vplate=8 × Cmp and wall temperature Tw=300, where Cmp represents the
most probable speed based on wall temperature. Initial gas temperatures are 300 K. VHS
model is used to model argon gas with molecular data adopted from Bird [12]. This prob-

diffusive

diffusive

diffusive

diffuse

L

H

moving plate

Figure 4. Sketch of a high-speed driven cavity �ow (Vp =8×Cmp, Tw =300 k,
Ar gas, L=H =1, L=50 m, Kn=0:04).
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lem is chosen as the :rst test problem due to its simple geometry and expected high-density
variations in the cavity.

Simulation results

Results of velocity vector and density ratio (n=ni) contour, using un-adaptive unstructured
quadrilateral mesh (2500 cells) with 62 500 simulated particles, are shown in Figures 5 and
6, respectively. A main counterclockwise circulation, centred at normalised location (0.67,
0.16), is formed within the cavity due to the high-speed moving plate at the bottom. Maximum
density ratio (n=ni)max =14:07 occurs at the right-hand bottom corner of the cavity, while
minimum density appears just above the moving plate, both due to the high-speed moving
plate at the bottom. These results are considered as the baseline solution for the following
results using mesh adaptation.

Quadrilateral and triangular meshes are both used to test the sensitivity of the developed
mesh adaptation module; however, only the results using quadrilateral mesh are discussed for
this test problem. Note that only local cell Knudsen number (Knc) is used as the adaptation
parameter for mesh adaptation in the current test problem.

Initial 2500 uniform unstructured quadrilateral cells are used. Corresponding simulation time
step is 1.17E-4 seconds. The same particle number (62 500) as that in un-adapted mesh is
used. The Knc criterion (Kncc) is set as 0.95. Evolution of adaptive mesh at each level of
adaptation is illustrated in Figure 7. As illustrated, the maximum number of mesh adaptation
levels is four, although the actual number of adaptation levels is seven. The adaptive mesh
for adaptation level greater than four is not shown due to the limited graphic resolution. The
number of mesh adaptation levels at the top corners (right- and left-hand) and bottom corner
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y/
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Figure 5. Velocity vectors of a high-speed driven cavity �ow using unadaptive mesh
(Kn=0:04, 2500 quadrilateral cells).
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Figure 6. Density ratio of a high-speed driven cavity �ow using unadaptive mesh
(Kn=0:04, 2500 quadrilateral cells).

(right-hand) are one and seven, respectively. The number of cells increases from 2500 of the
original mesh to 2972 of the :nal re:ned mesh (level 7). The cell numbers and corresponding
minimum Knc in the �ow :eld for all adaptation levels are summarized in Table I. Note that
the computational penalty caused by mesh adaptation is practically very small as compared
with the DSMC computation.

The results of normalised velocity vector and normalised density using the :nal adaptive
mesh (seven levels) are essentially the same as those with un-adaptive mesh. However, a very
weak recirculation on the right-hand top corner is resolved due to the re:ned mesh in this
region (not shown). In addition, the maximum density ratio occurs at the right-hand bottom
corner increases tremendously up to 160 also due to the very re:ned mesh in this region. The
location of this maximum density ratio does not occur right at the corner cell at the :nest cell
level, as illustrated in the exploded diagram, Figure 8. This demonstrates that mesh adaptation
is important in some regions of the �ow where some detailed �ow characteristics can only
be resolved with very :ne grids.

Thus, it is concluded that the proposed solution-based mesh adaptation module is capable
of handling both quadrilateral and triangular cells for the high-speed driven cavity �ows. Most
importantly, the additional computational cost due to mesh adaptation is relatively small as
compared with the DSMC computation.

IV. APPLICATION TO REALISTIC FLOW

The proposed mesh adaptation scheme has been veri:ed successfully by the benchmark prob-
lems stated previously using the local cell Knudsen number as the adaptation parameter. Thus,
to demonstrate the powerful capability of the current mesh adaptation, we have applied it to
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     (a)

(b)   (c)

(d)   (e)

Figure 7. Evolution of unstructured quadrilateral mesh of a high-speed driven cavity �ow (a) initial
(b) level 1 (c) level 2 (d) level 3 (e) level 4 (Kn=0:04; Kncc =0:95).

compute a realistic hypersonic �ow over a cylinder (Figure 9). The results are then com-
pared with previous simulated or experimental studies available in the literature. Note that
the discussion of �ow physics will be brief since we are only interested in demonstrating the
capability of the current DSMC implementation.
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Table I. Total cell numbers and minimum Knc at di;erent levels of mesh adaptation for
a high-speed driven cavity �ow with quadrilateral cells.

Level 0 1 2 3 7

Cell no. 2500 2709 2786 2863 2972
(Knc)min 0.14 0.194 0.258 0.343 0.954
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Figure 8. Enlarged view of the density ratio contour using adaptive mesh at the right-hand
bottom corner of a high-speed driven cavity �ow (Kn=0:04, 2972 quadrilateral cells).

    symmetric line

N2 gas 

n∞ 

Ma∞ 

T∞ 

Figure 9. Sketch of a hypersonic �ow over a cylinder (Ma∞ =20, T∞ =20 K, n∞ =5:1775E19,
N2 gas, Tw =291:6 K, D=1 m, Kn∞ = �=D=0:025).

A hypersonic 2ow over a cylinder

Flow and simulation conditions The �ow conditions are listed as follows: VHS nitrogen
gas with molecular parameters adopted from Bird [12], free-stream Mach number M∞=20,
free-stream number density n∞=5:1775E19 particles m−3, free-stream temperature T∞ =20K,
fully thermal accommodated and di;usive cylinder wall with Tw=To =0:18, where Tw and
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To are the wall and the stagnation temperatures, respectively. The corresponding free-stream
Knudsen number Kn∞ (= �∞=D) and Reynolds number Re∞ (=�∞u∞D= ∞) is 0.025 and
1834, respectively. These �ow conditions represent the experiments conducted by BQute:sch
[26]. Parker’s temperature-dependent rotational energy exchange model [12] is used to model
the diatomic nitrogen gas with the following parametric settings: limiting rotational collision
number Z∞

r = 21, potential well-depth temperature T ∗ =79:8K.

Mesh adaptation concerns This �ow problem is chosen to demonstrate the capability of
resolving the expected high density in the stagnation region and the high-density gradient
across the detached bow shock around the cylinder. In addition, it also serves to verify
the conformation of adaptive mesh to the circular surface. Corresponding adaptation cri-
teria for mesh adaptation is Kncc =1:0 with maximum number of adaptation levels equal
to :ve. Additional constraint, free-stream parameter, �0 = 1:05, which reduces greatly the
:nal re:ned total cell numbers, is used not to re:ne those cells with normalised density
ratio close to unity (within 5 per cent in this case). The side e;ect of this constraint
might increase the skew of the interfacial cells between un-adaptive free-stream cells and
the adaptive cell; however, the reduction of computational cost is appreciable and up to
approximately 20–30 per cent. Final free-stream cell size is expected to be much longer
than the local mean free path; however, the solution is not expected to deteriorate since
nearly uniform �ow properties prevail in the free-stream region. The impact on DSMC is
minimal as compared with that on CFD since the cells in DSMC are only used for col-
lision and sampling. In addition, initial 5281 triangular cells and approximately 370 000
particles are used for the simulation.

Adaptive mesh and Knc contour Evolution of adaptive mesh at each level (only 0–3 shown)
is presented in Figure 10 (a)–(d) with Kncc =1:0 and corresponding results are summarized
in Table II. Adaptive mesh for level 4 and 5 are not shown due to the graphic resolution limit
such that they look almost the same as level-3 mesh. In Table II, the cell numbers increase
from 5281 to 88 959 after :ve levels of mesh adaptation, while the corresponding minimum
Knc increases from 0.038 to 0.429. The number of cells is much less than that used by Kuora
and Takahira [27], which had 200 000 cells, but the positioning of the cells in the present
study may be superior to theirs due to the mesh adaptation scheme applied. As illustrated in
Figure 10(a)–(d), the mesh is re:ned across the strong bow shock around the cylinder (levels
1 and 2) as well as the stagnation region (levels 1–3) in front of the cylinder. It is clear that
the proposed mesh adaptation method captures the important �ow features such as the bow
shock in this case. We would expect that the results in these mesh-re:ned regions are better
than those without mesh adaptation.

Corresponding results of local cell Knudsen number contour at levels 0, 2 and 5 are shown
in Figure 11 (a)–(c). It can be seen that Knc in the free-stream region remains the same
(Knc =0:54) after :ve levels of mesh adaptation, while the Knc in both the stagnation region
and the shock increases up to 1∼ 2. As shown in Table II, the minimum Knc is 0.429,
which occurs at the interfacial cells behind the shock after level 5. Although the value is
less than two or three proposed by Bird [13], the values in most regions of interest (shock
and stagnation regions) are very close to or greater than unity. This should improve the �ow
resolution in these important regions and will be shown clearly when compared with previous
studies.
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Figure 10. Evolution of unstructured triangular mesh for a hypersonic �ow over a cylinder; (a) initial
(b) level 1 (c) level 2 (d) level 3 (Kn∞ =0:025; Kncc =1; �0 = 1:05).

Normalized density contour Results of the normalised density (n=n∞) are presented in
Figure 12. As illustrated, a rather strong bow shock stands o; at some distance away from the
cylinder. On one hand, the �ow is highly compressed across the nearly normal shock to the
stagnation point, where density increases tremendously. On the other hand, the �ow is slightly
compressed across the oblique shock away from the cylinder and then is slightly expanded
further downstream. A relatively rare:ed region (as compared with free-stream) with the size
of cylinder diameter is formed with a density ratio of less than 0.5 behind the cylinder since
most gas particles are directed away from the cylinder across the oblique shock as discussed
earlier. A maximum value of 26.3 is observed at the stagnation point due to the highly re:ned
mesh in this region, while a minimum value of 0.26 is observed just behind the cylinder.

Non-equilibrium temperature contours The distribution of non-equilibrium between transla-
tional and rotational temperatures can be demonstrated clearly by plotting the contour of a
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Figure 10. (Continued).

Table II. Total cell numbers and minimum Knc at di;erent levels of mesh adaptation for
a hypersonic �ow over a cylinder with triangular cells.

Level 0 1 2 3 4 5

Cell no. 5281 9938 26646 62328 81762 88959
(Knc)min 0.038 0.069 0.13 0.246 0.427 0.429

normalised parameter,

 = |Ttr − Trot |=Ttr ; (3)

as presented in Figure 13, where Ttr and Trot represent the translational and rotational temper-
ature, respectively. Clearly, strong temperature non-equilibrium exists in the bow shock espe-
cially for the regions near the stagnation line. Also appreciable temperature non-equilibrium
occurs in the wake and shear layer around the cylinder. In general, the normalised temper-
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Figure 11. Evolution of local cell Knudsen number for a hypersonic �ow over a cylinder; (a) initial
(b) level 2 (c) level 5 (Kn∞ =0:025; Kncc =1; �0 = 1:05).
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Figure 12. Normalised density ratio of a hypersonic �ow over a cylinder using adaptive mesh
(Kn∞ =0:025; 88 959 triangular cells).

ature non-equilibrium parameter becomes smaller far away from the cylinder and the shock.
Thus, temperature non-equilibrium due to the complicated �ow :eld is well resolved using
the adaptive mesh.

Entropy contour Entropy in the �ow domain is de:ned as

S =
p=p∞

(�=�∞)r
− 1 (4)

Where �=�∞ and p=p∞ represent the normalised pressure and density ratio, respectively.
Figure 14 illustrates the entropy contour in the �ow along with some typical streamlines.
Following the streamlines far from the cylinder, the entropy generation is positive due to the
compression wave but relatively small across the shock. After the shock, it becomes negative
due to expansion and :nally becomes essentially zero (isentropic) along the streamlines. It
is, however, much larger across the shock near the cylinder due to the strong normal shock
in the stagnation region. Considering the streamlines close to the stagnation line, we :nd that
the entropy increases :rst across the shock, and then decreases in crossing the boundary layer
of the cylinder. Later it increases again due to viscous dissipation in the boundary layer, and
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Figure 13. Non-equilibrium between translational and rotational temperatures for a hypersonic �ow over
a cylinder (Kn∞ =0:025; 88 959 triangular cells).

:nally increases afterwards because of appreciable non-equilibrium in the wake region and
the shear layer region.

Properties along the stagnation line Results of normalised number density (n=n∞), and nor-
malised translational and rotational temperatures ((T − T∞)=(To − T∞)) along the stagnation
line are presented in Figures 15 and 16, respectively. Previous experimental data of BQute:sch
[26] and DSMC data of Koura and Takahira [27] are also included in these :gures for com-
parison. Table III summarizes the comparison of simulation parameters between the current
study and Koura and Takahira [27]. First, for the density ratio, the present data agree well
with both the available experimental data and simulated data in front of and behind the cylin-
der. The maximum density ratio (∼ 23) of the present study is, however, larger than that
(∼ 16) of Koura and Takahira [27] due to the highly re:ned mesh in the stagnation region.
Second, for the translational temperatures along the stagnation line, the current simulation
data compare reasonable well with those of Koura and Takahira [27] (no experimental data is
available). However, we :nd that the translational temperatures increase more rapidly to the
peak value (1:2) but decrease at essentially the same rate to the stagnation value (0.25). The
present simulate that data are in good agreement with those of Reference [27] in the wake
region. Finally, for the rotational temperatures along the stagnation line, our data seems to
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Figure 14. Entropy contour and typical streamlines for a hypersonic �ow over a cylinder
(Kn∞ =0:025; 88 959 triangular cells).

agree better with experimental data, especially in the stagnation point, than those of Koura
and Takahira [27]. This should be also attributed to the highly re:ned mesh in the stagnation
region.

V. CONCLUSIONS

In the current study, a DSMC method using the adaptive unstructured mesh is proposed. In this
method, an isotropic mesh re:nement is used to enrich the cell where the adaptation parameter,
Knc, is smaller than the preset value. Additional constraint, �¿�0, is used in external �ow
to help reduce the total re:ned cell numbers by relaxing the adaptation criteria in the free-
stream cells. An an-isotropic mesh re:nement is then used to remove the hanging nodes in the
interfacial cells, which are created during the isotropic re:nement process. A high-speed driven
cavity �ow is used to verify the proposed method. Results all show that the current method
of mesh adaptation using unstructured mesh is e>cient and more accurate as compared with
that without mesh adaptation. Finally, the developed method of mesh adaptation is applied to
a hypersonic �ow over a cylinder. Results are in good agreement with previous experimental
and simulation data.
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Figure 15. Normalised number density along the stagnation line for a hypersonic �ow over a cylinder
(Kn∞ =0:025; 88 959 triangular cells).

Figure 16. Normalised translational and rotational temperature along the stagnation line for a hypersonic
�ow over a cylinder (Kn∞ =0:025; 88 959).
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Table III. Comparison of simulation parameters between the present study and Koura and Takahira [27].

Present Koura and Takahira [1994]

Model VHS VSS
Particle no. 3.7E5 1.E6
Rotational energy model Parker Parker
Mesh adaptation Yes No

In summary, major :ndings of the current research are listed as follows.

1. A mesh adaptation method (h-re%nement) using unstructured mesh, combining the DSMC
method, is proposed and tested successfully using a high-speed driven cavity �ow as the
benchmark problem.

2. The proposed method alleviates the burden often required on creating a suitable mesh
considering the solution variations, which is generally not known a priori. It automatically
generates a solution-based mesh in the current proposed method.

3. Application of the proposed method to a realistic hypersonic �ow shows that the solution-
based adaptive mesh can resolve several important �ow features, e.g., shock.

Extension of the current mesh adaptation procedures to an unsteady �ow problem is pos-
sible. However, not only the cell-re:ning process developed in the current study but also the
cell-coarsening process has to be included. This will de:nitely complicate the mesh adaptation
process. Practically, DSMC is rarely applied to compute the unsteady problem. In addition,
it is well known that the computational cost of computing near-continuum gas �ows using
DSMC is prohibitively high even with current highly developed computers. One of the reme-
dies is to take advantage of the parallelism inhered in the DSMC method. Thus, combining the
mesh adaptation and parallel DSMC should help alleviate this problem greatly. The results,
which take advantage of both, will be reported in the very near future.
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